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Internal waves in a horizontally 
inhomogeneous flow 
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(Received 28 October 1982 and in revised form 28 November 1983) 

The effect of horizontally inhomogeneous flows on internal wave propagation in a 
stratified ocean with a constant Brunt-Vaisala frequency is analysed. Dispersion 
characteristics of internal waves in a moving fluid and kinematics of wave packets 
in smoothly inhomogeneous flows are considered using wave-normal surfaces. It is 
shown that internal-wave blocking and short-wave transformation may occur in 
longitudinally inhomogeneous flows. For parallel flows internal-wave trapping is 
possible in the vicinity of the limiting layer where the wave frequency in the locally 
comoving frame of reference coincides with the Brunt-Vaisala frequency. Internal- 
wave trapping also takes place in jet-type flows in the vicinity of the flow-velocity 
maximum. WKB solutions of the equation describing internal-wave propagation in 
a parallel horizontally inhomogeneous flow in the linear approximation are obtained. 
Singular points of this equation and the related effect of internal-wave amplification 
(overreflection) under the action of the flow are investigated. The spectrum and the 
growth rate of internal-wave localized modes in a jet-type flow are obtained. 

1. Introduction 
The presence of large-scale oceanic quasi-stationary motions, in particular frontal 

currents and rings, changes the character of internal-wave propagation essentially, 
especially so when flow and internal-wave velocities are much the same. The effect 
of inhomogeneous flows on internal waves has been experimentally investigated in 
the ocean (see e.g. Frankignoul 1974; Ruddick & Joyce 1979) and in the laboratory 
(Thorpe 1981). The theoretical studies have principally dealt with the analysis of 
internal-wave propagation in vertically sheared flows (e.g. Booker & Bretherton 1967 ; 
Fritts 1978). The distinctive characteristics of this propagation are internal-wave 
reflection at the level where the wave frequency in the locally comoving frame of 
reference coincides with the Brunt-Vaisiila frequency, and wave trapping in the 
vicinity of the critical layer where the above frequency vanishes. 

Available experimental data (see e.g. MODE Group 1978) are indicative of 
considerable horizontal inhomogeneity of the current field in the ocean. Therefore 
analysis of internal-wave propagation in flows with horizontal variation of velocity 
is of interest. A similar problem has been considered by Olbers (1981), who analysed 
the internal-wave trajectories in parallel flows. Propagation of Rossby-gravity waves 
in a rotating stratified flow has been investigated by Ahmed & Eltayeb (1980). The 
present paper deals with theeffect of horizontally inhomogeneous flows on short-period 
internal waves within the framework of a simple model with the Brunb-Vaisala 
frequency and flow velocity independent of depth. 

Here we consider the two most typical cases: flows inhomogeneous along the 
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direction of velocity ( V l q  )I v) and parallel flows ( V l q  I v).? The scale of flow 
inhomogeneity is assumed to be much larger than the internal-wave wavelength, and 
the WKB method is used. First, internal-wave kinematics in smoothly inhomogeneous 
flows is investigated for both cases. The consideration is based on a detailed analysis 
of dispersion characteristics of waves in a moving fluid using wave-normal surfaces 
(WNS). Then the case of parallel flows is studied in more detail. In this case features, 
in particular of resonant character, may occur. To analyse them, equations describing 
an internal-wave field in the presence of a horizontally inhomogeneous parallel flow 
are used. Internal waves are shown to intensify or attenuate owing to the interaction 
with the flow. They may also be trapped in the vicinity of the layer where the 
Doppler-shifted frequency of the wave coincides with the BruntVaisala frequency. 
Localized waves may occur in flows with a jet velocity profile. Under certain 
conditions these waves may grow exponentially in space or time. 

2. Internal-wave kinematics in a horizontally inhomogeneous flow 
2.1. Wave-normal surfaces 

A dispersion equation for internal waves in a uniformly stratified fluid moving a t  a 
speed U = U - x ,  has the form (see Phillips 1977) 

P( k; + k2,) 
5 2 2  E ( w - k * v ) Z  = 

k; + k; + k;’ 
or in the explicit form 

where w and k(k,, k,, k,) are the frequency and the wavevector of the internal wave 
( z  is the vertical and x and y are the horizontal coordinates), D is the Doppler-shifted 
frequency of the wave, N is the Brunt-Vaisalii frequency. WNS (w = const) in 
conformity with (2.1) are the surfaces in a three-dimensional k-space. To investigate 
the cases of longitudinally inhomogeneous and parallel flows, cross-sections of these 
surfaces by the planes k, = kyo and k, = k,, respectively are required. 

Plots of WNS (w > 0) in the plane (k,, k,) for different U are given in figure 1 .  The 
arrows show the direction of the wave group velocity. For simplicity the plots are 
given for k,, = O.$  Figure 1 ( a )  corresponds to a stagnant fluid. The angle between 
the lines is defined by the frequency w .  When the fluid moves, anisotropy occurs and 
the form of the WNS changes (figure 1 ( b ) ) .  The lines depicted in figure I (a)  bend, 
lock a t  the point k, = (w-  N)/Uforming a ‘loop’ at k, < 0, and tend asymptotically 
to the line k, = w / U  a t  k, > 0. To the right of this line branch I1 appears which 
corresponds to the negative sign in (2 .2) ,  i.e. 52 < 0. 

Branch I1 corresponds to waves with negative energy density (Whitham 1974; 
Acheson 1976). These are slow waves: their phase velocity c = w / k ,  is smaller than 
the flow velocity. Physically the negative energy density means that the total energy 
density of a fluid with excited slow waves is smaller than the energy density of the 
flow in the absence of perturbations. The fact that the energy density of the waves 
with 52 < 0 is negative follows from the average variational principle (Whitham 

t The first type of flow does not satisfy the continuity equation, and there is always a horizontal 
or a vertical component of flow velocity perpendicular to U. However, if it is small, the idealization 
(U = U ( r )  x,) is reasonable, as is evidenced by the consideration given below. 

$ In a more genera1 case k,, + 0 the behaviour of the curves is different from that shown in figure 
1 only in the vicinity of the origin; in this case the WNS cross the axis k, in two points (at k, 9 0). 
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(b 1 
FIGURE 1 .  Plots of WNS in a moving fluid on the ( k z ,  k,)-plane at k, = 0: (a)  U = 0; ( b )  U > 0. 

1974). According to this principle in the linear approximation the energy density of 
the wave W = sZa6p/aw, where 9 is the mean Lagrangian density, a 9 / a w  is the 
wave-action density invariant with respect to the reference system. This invariant 
is a positive value, which is readily proved when the wave is considered in the reference 
system with a motionless fluid. Therefore the energy density of the wave in the 
laboratory system is negative a t  B < 0. As U+O branch I1 goes to infinity. A 
segment of branch I which has a positive x-component of the group velocity 
corresponds to  backward waves (k. V, < 0). 

Figure 2 gives plots of WNS in the ( E z ,  E u )  plane at  E ,  = kzo. These curves are 
similar to WNS of the waves on the surface of a moving fluid studied by Basovich & 
Talanov (1977). At U = 0 (figure 2 ( a ) )  the WNS are isotropic and have the form of a 
circumference. Two more branches appear in the moving fluid: I" - backward waves, 
and I1 - slow waves with a negative energy density (figure 2 ( b ) ) .  As the flow velocity 
grows, branches I' and I" converge, encounter at 
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I \  \ I  

FIGURE 2. Plots of WNS in a moving fluid on the (kZ, k,)-plane at k, = kzo: 
(a) U = O ;  (b )  0 < U <  U,; (c) U >  U,. 

and transform to a single branch at U > U,, (figure 2 c ) .  Branches I and 
vertical asymptotes a t  the points 

W - N  U + N  
kx, = __ u J k x 1 1 = 7 .  

have 

(2.4) 

The plotted WNS enable one to describe propagation of internal-wave packets in 
smoothly inhomogeneous flows of a stratified fluid. 

2.2.  The longitudinally inhomogeneous $ow 
The wave-vector component transverse to U is not changed by a longitudinally 
inhomogeneous flow U = U(x) x,, and the wave frequency does not vary in a station- 
ary flow. Consider a wave packet which moves from the region of the stagnant fluid 
in the direction opposite to the flow with a negative velocity gradient dU/dx < 0 
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and which has vector k(k,,, 0, kzo) in this regi0n.t This corresponds to point a in figure 
1 (a) .  Moving against the flow to the region of U increase, the packet slows down, 
and at U = U, (2.3) stops (5, = 0, the top of the ‘loop’ in figure 1 ( b )  where points 
a and a’ coincide). This effect known for surface gravity waves is called ‘blocking’ 
(Gargett & Hughes 1972; Phillips 1973; Smith 1975; Basovich & Talanov 1977). I n  
the blocking point the packet reflects as a group of backward waves (point a’ in figure 
1 (b ) ) .  I n  the reflected packet, wave crests move against the flow, while the envelope 
moves along the flow. At the same time k ,  grows unlimitedly as U decreases. 

Internal-wave-packet blocking may also occur in flows with a positive velocity 
gradient (dU/dx > 0), provided that the backward waves have been excited. If the 
flow velocity is a non-monotonic function of the x-coordinate, packet trapping is 
possible in the region of its minimum velocity bounded by two blocking points.$ 

2.3. The parallel $ow 

The parallel flow U =  U ( y ) x ,  does not change components k ,  and k, of the 
internal-wave vector and its frequency. To analyse the motion of wave packetain 
such a flow, let us use the WNS given in figure 2. (It should be noted that these WNS 
can also be used for the previous case. However, when the waves are investigated 
in a longitudinally inhomogeneous flow (2.2) figure 1 seems to  be more 
demonstrative.) 

Consider a wave packet moving a t  an angle to the direction ofthe flow with V,, < 0, 
k,, < 0 and k ,  > 0 (point b ,  figure 2(a ) ) .  Assume that the flow velocity increases in 
the direction of wave propagation dU/dy > 0. It is easy to see that the component 
of the group velocity V,, does not change the sign while V,, changes its sign a t  a 
certain point. At U = (w-N) /k , , ,  k,, and k,, coincide and a specific layer appears 
( Vgy-fO, k y +  00).  Since the waves cannot propagate beyond this layer, let us call it 
a limiting layer. As shown below, the limiting layer in a horizontally inhomogeneous 
flow and the critical layer in a vertically inhomogeneous one are very much alike. 
The wave amplitude in the vicinity of such layers tends t o  infinity, thus dissipation, 
nonlinearity or other saturating factors should be taken into account. 

If the packet moves with V,, > 0, kk,, > 0 and k ,  > 0 (point c in figure 2) in a flow 
with dU/dy > 0, k;, and k’ coincide a t  a certain velocity U and the wave reflects. At 
the same time k ,  and V,, change the sign. Using WNS one can also trace packet 
localization in a flow with jet-type profile. This problem is discussed in detail in $5 .  

The consideration performed applies not only to internal-wave packets propagating 
along the z-axis but also to waves with a mode structure (in a stratified fluid layer 
between the rigid boundaries). For this purpose i t  suffices to present the mode as a 
superimposition of two waves with opposite signs and equal values of k,. 

f The case k ,  = 0 is considered. Similar effects also occur at k,  =+ 0. However, the approximation 
assumed for a longitudinally inhomogeneous flow is valid only a t  small k,. At large k ,  a flow U(x. y) 
should be considered and the variation of k,  taken into account. 

$ Using WNS one can similarly trace internal-wave propagation in a flow with a vertical velocit? 
shear U = U(z)x , .  For this purpose k, = k,, must be fixed in figure 1. It is easy to see that  t h r  
packet moving against the flow reflects a t  point z*,  which is defined by the reIat,orr 
N-k , ,  U(z,) = w .  Unlike in blocking, reflection in this case is accompanied by transition of the  
representative point to the symmetrical branch of WNS. As the packet moving along thp flow 
approaches the layer where U = c = w/k,,,  the vertical component of the wavenumber k z ( z )  
increases and the vertical component of the group velocity decreases. This is known as a ‘critical ‘ 
layer (Booker & Bretherton 1967). 
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3. The equation for an internal wave in a parallel flow and its WKB 
solutions 

Kinematic consideration of internal waves should be supplemented by a transfer 
equation. This equation for smoothly inhomogeneous flows follows from conservation 
of the density of the wave action (Whitham 1974). Behaviour of the waves on caustics, 
for example at blocking points, may be determined in a manner similar to that used 
by Basovich & Talanov (1977). Therefore the case of a longitudinally inhomogeneous 
flow is not analysed in detail in this paper. 

Below we concentrate our attention on internal waves in parallel flows. Here a 
number of features associated with the presence of limiting and synchronism points 
makes analysis of the wave equation necessary. The latter is obtained from a 
linearized set of equations for an incompressible nonviscid stratified fluid, which in 
the Boussinesy approximation has the form 

Du 1 Dt, 1 - -+ u',u+-j5, = 0, 
Dt P 

Dw 1 ,  DV 
-+(T+-p, = 0, 
Dt P Dt 

__- N2w = 0, 

u,+vy+w, = 0. 

Here u, v and w are respertively the x-, y- and z-components of the velocity 
perturbation, is the pressure perturbation, p is the mean density, a = -gp"/p, p" is 
the density perturbation, N2 = -gp,/p, D/Dt = a/at+ U(y) a/ax, the indices denote 
differentiation with respect to the corresponding coordinate, and U' = dU/dy. The 
system (3.1) reduces to 

where A = a2/ax2 + a/ayz +2/az2.  For the amplitude of a sinusoidal wave 

w 
r?: = ~(~)exp[i( lc ,x+k,z-wt)] ,  - = c, 

an ordinary diffcrential equation is available (cf. Barcilon & Drazin 1972) : 

(3.3) 

Substitution of the variable p = ( U - c )  5 in (3.3) yields 

whcrc 

Equation (3.4) is similar to the Schrodinger equation for a particle in a potential hump 
- K 2 ( y ) .  For a smooth hump, that is when the scale of inhomogeneity is large 
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(b  1 
(a ) 

FIGURE 3. ‘Potential hump’-K2(y) of internal waves in a shear flow ( a )  and 
in a flow with a jet-type velocity profile (b) .  

compared to  the wavelength, (3.4) has two linearly independent WKB solutions of 
the form 

6 1 , z  = [K2(Y)1-: exp { * i J[Kz(Y)I? dYj (3.6) 

To illustrate the solutions (3.6), figure 3 ( a )  shows a ‘potential hump’ (3.5) in a shear 
flow 

assuming that k ,  > 0, Urn > (w + N ) / k ,  and w < N .  Singularities of the potential 
hump reveal a t  points where U(y,) = w / k ,  and U(yc) = ( w + N ) / k , .  Let us refer to 
points ys as points of synchronism, since here the flow velocity coincides with the 
phase speed of the wave, and to yc as limiting points. The WKB approximation is 
irrelevant in the vicinity of these points as well as near the turning points where 
P ( y )  = 0 ;  the role of these points is elucidated in $4. As seen from figure 3(a),  the 
waves incident to the region of the shear flow reflect a t  the turning point y1 behind 
which there is a non-transparency region. The wave partially transits into the region 
of propagation y > yz bounded by the limiting layer ya. At U > U(y,), i.e. a t  y > yf, 
the waves with the given w and k ,  cannot exist, since the modulus of the wave 
frequency in the locally comoving frame of reference SZ = w -  k ,  U exceeds that of 
the Brunt-Vaisala frequency: 101 > N .  I n  the non-transparency region (yl, yz) there 
is a point of synchronism y = ys in which singularity of the coefficients in (3.4) occurs. 
Location of the point of synchronism in the non-transparency region does not reveal 
it kinematically. However, as shown in $94 and 5, i t  essentially influences wave 
propagation. 

4. The wave-reflection coefficient 
Owing to the singularities of the potential hump mentioned in $3, the coefficient 

of internal-wave reflection a t  a shear flow is different from unity. To determine the 
coefficient one should construct an asymptotic solution of (3.4) for the entire region 
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y, matching WKB solutions of (2.6) a t  the turning points y1 and y2 and a t  the singular 
points ys and yp with allowance made for the boundary condition a t  y + 00. Solution 
matching a t  turning points is accomplished in the conventional way (see e.g. Bender 
& Orszag 1978) and is not considered here. To define the rules of matching a t  points 
ys and ye one should use standard equations representing the basic features of the 
solution of (3.4) in the vicinity of these points. The solution in the vicinity of the point 
ye is sought for under the condition 

one obtains 

Equation (4.1) emerges in various problems, in particular in the theory of hydro- 
dynamic stability. I ts  solution is 

where 2, is an arbitrary Bessel function of the first order. The Bessel function has 
a branching point y = ye. 

The rule of selection of the appropriate branch of the solution for (4.1) and (3.4) 
follows from the analysis of a more general problem. The selection may be 
accomplished, for example, based on the following requirements : the solution of the 
problem for an inviscid fluid should be a limit of the solution of a 'viscous problem' 
when viscosity tends to zero. Another approach to problems of the kind consists in 
considering the evolution of an initial perturbation, in particular of the wave packet. 
I n  this case, the Fourier transform in (3.2) should be substituted by a Laplace 
transform, and the singular point in the equation is located in the complex plane 
rather than on the real axis. This automatically defines the rule of matching across 
this point and the selection of a solution branch. 

These two approaches are equivalent, and give the rule first introduced into physics 
by Landau (1946) and into hydrodynGmics by Lin (1955) : a singular point located 
on the real axis should be matched in the complex plane y in the same manner as 
it would be matched in the case of a growing solution Im w > 0 on the real axis. Using 
this rule one can readily obtain that a t  k,  U' > 0 a singular point is matched in the 
upper half-plane, and the wave with a negative phase velocity a t  y < ye corresponds 
to the exponentially damped solution a t  y > Ye: 

(4.3) 

Note that branch I1 of the dispersion curve in figure 2 (c )  corresponds to the waves 
in the region (y2, ye). For this branch the directions of the wave vector and 
group-velocity components along the y-axis are opposite. Thus the group velocity a t  
y > y2 is directed to the limiting point. The bounded internal-wave train asymptoti- 
cally approaches the limiting point, with the wave-enei-gy density increasing until 
dissipation or nonlinear effects appear. t 

If the flow velocity U ,  were relatively small, so that the limiting point were absent 

t In flows with a vertical velocity gradient the critical layer separates the regions of propagation 
of the waves with different signs of energy density. Therefore at a finite Richardson number the 
waves can transit through the critical layer, in contrast with the limiting layer in a horizontally 
inhomogeneous flow. 

(Y-YO! ~ X P  + ~ [ A ( Y  - ~ e ) I t )  * ( Y ~ - Y ) { ~ X P  { -~~[A(Y~-Y)I+} .  
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in the presence of point y2, a solution could be constructed using the radiation 
condition at y > y2 for the wave transmitted through the barrier (y,, y2). The same 
procedure can be used in the presence of a limiting layer, since it allows for such a 
wave in the region (y2, y t )  only. 

The problem of wave transmission through the barrier in the presence of a point 
of synchronism was analysed as applied to  acoustic waves in parallel shear flows by 
Fabrikant (1976) and Gavrilenko & Zelekson (1977). A similar consideration is 
suitable for our case. Matching WKB solutions to the left of point y2 to solution in 
the region y > yz is accomplished with the use of the Airy function (Bender & Orszag 
1978). To match solutions in the regions y < ys and y > ys, a standard equation is 
used for which the Whittaker functions are the solutions. Selection of appropriate 
branches of these functions is defined by Lin’s rule. Subsequent crossing of point y1 is 
similar to matching WKB solutions a t  point yz. Omitting tedious computations 
(see Appendix), we write the reflection coefficient in its final form 

Assumption of a smooth velocity profile gives S,, S,, 6 P 1 ; Jpl + 1 ,  then (4.4) yields 

(4.6) 

It follows from (4.6) that the modulus of the reflection coefficient of the wave at 
the flow may be both larger and smaller than unity, i.e. the incident wave amplifies 
(overreflection) or damps depending on the ratio of the second and third terms and 
the sign of p. If p is not small, the third term makes the main contribution to (4.6), 
since 6, < 6. In  particular, when the flow-velocity profile changes so that y2 --f co , the 
second term vanishes. The third term is defined by the resonant wave-flow interaction 
a t  the point of synchronism. This mechanism is similar to that of wave generation 
by wind (Miles 1957). According to this, surface waves grow as a result of their inter- 
action with the wind flow in the layer of coincidence. The sign of the third term in 
(4.6) is defined by the sign of p, which depends on the velocity profile. In  the case 
under consideration k,U’ > 0 the wave amplifies (p > 0) at U”(y,) < 0 (with the 
energy transferred from the flow to the waves), and a t  U“(y,) > 0 the inverse process 
takes place and the wave damps. The efficiency and character of the resonant 
interaction depend on the energy exchange between the wave and the particles of 
fluid with velocity close to that of the wave. Particles with velocities larger than the 
wave velocity slow down and give their energy to the wave, while particles with smaller 
velocities accelerate and withdraw energy from the wave. The difference between the 
number of ‘fast’ and ‘slow’ particles in the velocity intervals U(y,)+dU and 
U(y,) - dU, where d U  corresponds to particles efficiently interacting with the wave, 
defines the character of resonant interaction. One can show that this difference is pro- 
portional to p. At U”(y,) = 0 resonant wave-flow interaction is absent (p = 0) and the 
main role in (4.6) belongs to the second term. This term describes overreflection, which 
arises owing to the excitation in the region y > y2 of the negative-energy wave and 
its contribution to the module of the reflection coefficient is always positive. 

IRI2 N I + e-26 + 2np e-Z81. 
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5. Waveguide modes in a jet-type flow 
The possibility of internal-wave localization in flows with a jet-type velocity profile 

has been stated in 52.3. We consider this phenomenon in more detail. As follows from 
the analysis of the dispersion relations, localized waves moving against the flow 
(k, < 0) with a phase speed N/Ik,\-  Urn < Icl < N/Ik,\, and along the flow (k, > 0) 
with U , - N / k ,  < c < Urn, are feasible in a parallel jet flow with the velocity 
maximum Urn. For definiteness, assume that n2( Urn) > 0. The case of forward waves 
is of most interest, since localized waves propagating along the flow may grow owing 
to the mechanisms considered in $4. The potential hump --K2(y) for a jet flow a t  
Urn < ( w + N ) / k ,  is given in figure 3 ( b ) .  Assuming that the frequency w is real, we 
determine the space spectrum and growth rate of the localized modes. Let us use the 
condition of mode formation 

where R, and R, are the coefficients of reflection a t  the potential barriers (y,, yi) and 
(y2, y;), which can be determined from formulae similar to (4.4). To find K = Rek, 
we transform (5.1) to 

where 

The points corresponding to the integration limits in (5.4) are given in figure 3 ( b ) .  
It can be easily shown that at IR,R21 > 1 the increment of the localized internal wave 
is positive y > 0. To estimate the increments, consider a flow with the Gaussian 
velocity profile 

The dimensionless space increment = y L  as a functim of the dimensionless wave 
number f = kL is given in figure 4 for k,L = 1 ,  N L / U ,  = 1. The broken lines 
describe the families of modes with different Mach numbers C = c/U, ,  where c = w/K. 
The points on these lines correspond to a discrete mode spectrum for each c .  I n  the 
vicinity of the point 

U( y)  = Urn exp { - y 2 / L 2 } .  (5.5) 

AT 

the spectrum becomes more and more dense. The localized modes in a jet of the type 
(5.5) increase if c" > Co = 0.53. At smaller velocities y < 0. The second derivative of 
the function (5.5) a t  the points of synchronism changes the sign a t  C, = 0.61. 
Proximity of the values of C, and C; is indicative of a greater effect of the wave-flow 
resonance on the growth rate as compared with the negative-energy wave radiation 
mechanism. 

At K > k,  the above picture changes qualitatively. I n  particular, on the potential 
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-0.2 1 
FIGURE 4. Dimensionless space increment as a function of dimensionless wave number for internal 

waves a t  k,L = 5 ,  NL/U,,, = 1: (1)  c = 0.3Um; ( 2 )  c = 0.5Um; (3) c = 0.7Um. 

FIGURE 5.  ‘Potential hump’-K2(y) of internal waves in a jet flow in 
the presence of limiting layers. 

hump at K = k, two limiting layers appear in the vicinity of the jet centre and the 
region between them is non-transparent for the waves with the given parameters 
(figure 5) .  As K increases, the limiting layers move from the centre of the jet to the 
periphery. I n  this situation no mode forms. 

6. Conclusion 
The consideration given above shows that horizontally inhomogeneous flows may 

essentially affect internal-wave propagation. In particular, the effects of wave 
trapping by limiting layers and amplification by the modes in a jet may result in an 
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increase in the internal-wave field in the region of the intense flow. It is not excluded 
that the excess of the internal-wave amplitude in the synoptic vortex over the 
background level observed by Dykman & Kiselyova (1981), is also governed by these 
mechanisms. The wave-vector orientation of the internal-wave packets perpendicular 
to the flow when approaching the limiting point may be one of the causes of significant 
anisotropy of the internal-wave spectra in the flow region observed by Frankingnoul 
(1974). 

Upon the whole, however, i t  should be pointed out that  the model considered here 
is quite simplified, since it does not take into account a lot of factors, in particular, 
the Earth's rotation, a complex three-dimensional structure of real fields of the flow 
velocity and stratification, as well as their non-stationary character. Further 
development of the theory requires consideration of all the mentioned factors, which 
essentially complicates the investigation. At the same time, our analysis carried out 
for a simple model made i t  possible to  study effects of the kind that may be essential 
in more complex situations. 

The authors are grateful to Professor L. A. Ostrovsky and Professor V. 1. Talanov 
for fruitful discussions. 

Appendix 
To obtain an expression for the coefficient of wave reflection at the flow with a 

monotonic velocity profile (figure 3 ( a ) ) ,  we match WKB solutions of (3.4) and (3.5) 
throughout the region of the variable y. As shown in 94, only the wave with a group 
velocity oriented from point yz may exist in the region (y2, ye). Using this as the 
radiation condition at y > y2, i t  is sufficient to determine the coefficient of reflection 
at the potential barrier (yl, y2). Formal consideration of solutions for (3.4) and (3.5) 
requires introduction of a large parameter. We introduce a new variable ij = y / L  and 
write (3.4) and (3.5) in the dimensionless form 

E"+K2(Y")5 = 0, 

where k is the wavenumber a t  U = 0. For the sake of simplicity, the tildes over y and 
n are omitted below. 

The asymptotic form of the general solution (A 1 )  in the region y > yz is 

5 = AI(92, Y) + B,(y, 9 2 ) .  (A 2) 

We use the notation for WKB solutions adopted by Heading (1962 6 )  : 
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FIQURE 6. Complex y-plane with the turning points yl, and the point of synchronism ys: - - -, 
Stokes lines; -, antistokes lines; --, branch cuts. 

For WKB solutions in a complex plane, solutions increasing or decreasing over a. 
have indices d and s respectively. In the intermediate case the index is omitted. 

Figure 6 shows a complex plane of variable y with the Stokes and antistokes lines, 
and the branch cuts defining an unambiguous choice of the branch of solution. It is 
known that the Stokes phenomenon consists in a stepwise variation of the asymptotic 
presentation of the solution when certain lines on the complex plane, so-called Stokes 
lines, are crossed (Heading 1962b). On these lines, the arguments in the exponents 
in (A 3) and (A 4) are real: 

Therefore one of the WKB solutions on the Stokes lines grows exponentially with 
ao, and the other one decreases. When crossing the Stokes line, the coefficient in (A 2) 
changes abruptly a t  the WKB solution (A 3) or (A 4), decreasing on this line. The 
value of the jump is equal to the product of the coefficient at the growing solution 
and a certain constant (the so-called Stokes constant) which corresponds to the given 
Stokes line. The Stokes constants are defined by standard equations. 

The Stokes lines for (A 1) are given in figure 6 (broken lines). Beyond the Stokes 
lines, arguments in the exponents of solutions (A 3) and (A 4) are complex. There are 
lines (antistokes lines) on which the given above arguments are imaginary: 

Solutions (A 3) and (A 4) on the antistokes lines oscillate as a. varies. When these 
lines are crossed, the signs of the real parts of the arguments in the WKB solutions 
(A 3) and (A 4) and correspondingly their behaviour as functions of a, change. This 
results in the change of the indices d and s of these functions. The antistokes lines 
are shown in figure 6 by heavy curves. The wavy curves show the branch cuts. These 
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are drawn from points y1 and y2 and define the unambiguous choice of the branch 
of function n(y) in the region (yl, y2), 

n(y) = Inlebin, 

and correspondingly of the function n-i. The branch cut drawn from the point of 
synchronism ys is defined by the rule of matching (see $4). 

The Stokes-like pattern is constructed based on standard equations. In the vicinity 
of the turning points the construction is carried out conventionally using the Airy 
equation. In  the vicinity of the point of synchronism the standard equation was 
obtained by Gavrilenko & Zelekson (1978) according to Fok (1931): 

where 
T 1" f Y  

Equation (A 5 )  has the same singularity as (A 1) and coincides with (A 1) far from 
ys. The exact solution of (A 5) is 

where s; = a,n(y), C, and C, are arbitrary constants, and Wp,s and W-,,: are the 
Whittaker functions. Since the parameter a, is large, lsol is large even a t  small Iy-ysl. 
Instead of the Whittaker functions one can use their asymptotic expansion for larger 
values JsI of the variable s = 2is, (note that arg s coincides with arg (y-ys)). Then the 
asymptotic expansions are at the same time representations of the solution of (A 1). 
At Is1 $ 1, instead of (A 7) one can write 

Here a and /3 are arbitrary constants. The Stokes phenomenon for (A 8) was studied 
by Heading (1962a), who obtained the Stokes lines args = xn, the antistokes lines 
arg s = x ( i  + n)  and the Stokes constants 

n /v + vp) r( - 1 + vp), 

n = 0 ,  f l ,  f 2 ,  ..., 
(A 9) T = 2xie-4rrinup 

v =  (-l)n, 

where r is the gamma function. The lines in figure 6 are drawn according to Heading 
(1962~) .  

Let us construct an asymptotic representation of the solution of (A 1 ) .  If the 
coefficients A,  and B, in (A 2) a t  y > y2 are known, we must find the coefficients A,, 
and B,, at y < y, in the expression 

f = AIdYU Y f + B I I ( Y ,  Y A -  

Consider points yz, ys  and yl. Let us construct asymptotic representations successively 
in regions 1, 2 and so on (figure 6) according to the procedure described by Heading 
(1962b). 
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2:  AI(yZ, Y)d+(BI-iAI)(y, YZ)s; 

in crossing the Stokes line from region 1 to region 2, the coefficient changes abruptly 
a t  the decreasing solution, the Stokes constant is -i. 

3 :  AI(yZ, Y ) s + ( ~ I - ~ ~ I )  (Yj  Y2)d;  

the interchange of indices corresponds to the change in behaviour of the functions 
(A 3) and (A 4). 

3 4 :  the region of the real axis y < yz is the Stokes line. 

The WKB method does not allow for determination of the coeEcient at the 
decreasing solution in this line. However, for (A 1)  there is an invariant (Heading 
1962 b )  

Use of this invariant makes it possible to determine the Stokes constant in the Stokes 
line. When crossed, this line is equal to half of the Stokes constant, i.e. in our case 
i t  is -ai. Then 

Im (cE*) = const. (A 10) 

A3, 4(Yz, Y), + B3, 4(y, Y2)d = [A1-$(B1-iA1)l (yz, y)s+ (BI-iAI)(Y> Yz)d. 

Finally we obtain a relation in the matrix form 

Transition from point y, to point y, 

When we pass over from the basic functions (y,, y), and (y, Y2)d to the functions (ys, Y)d 

and (y, y& the coefficients transform as follows 

where 
J Y S  

Matching across point y, 

Consider (A 8) on the real axis a t  y > y,: 

where a+ and p+ are the values of a and p at y > ys. On the real axis a t  y < y, 
the functions Q and P behave as follows : 

(Y,, Y),, Q = n-$ ,$s-inp -p In Is1 

p = ,-$,-:s+irp+pIn(s( ,-!je-+s+ixp - ixp - e 

n-$ e$s-inp = e-ix,u 

(Y, Ysfd, (A 14) 
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where s = Is1 ein. The real axis is the Stokes line, the same as for matching across point 
yz. Here Stokes constant on the line is also half of that when the line is crossed. To 
sum up, the relation between A5, 6, B5, and A7, B7, is 

5-6 : a+ Qd +P+ = As, 6(Ys> Y)d + B5, 6 k j  Ys)s ; 

6 a+ Qd + [p+ + a+ 1 P, ; 

7 : a+ Q, + [P+ ++T, a+ I Pd ; 
7-8: (a+ +iT,[p+ +iT, a+]} Qs+ [P+ +iToa+I pd 

= a-Qs+P-Pd = a-e-iKp(ys, y),+P-eiKp(y, Ys)d 

= A,, s(ys, y ) s +  B 7 ,  8 ( Y ,  Ys)d. 

Here a- and p- are the coefficients in (A 8) in the region y < y,, and T, and TI are 
the Stokes constants obtaned from (A 9) : 

2ni 
To = 

r(2 +p)  r( - 1 + p )  ' 

2ni 
TI = 

r ( Z - p ) r ( - l - p ) .  
As a result we have 

where 
R 

f ( 2  -p) r( - 1 -p) . Y ( P )  = 

The other transition matrices are found in a similar way. 

Transition from point ys to point y1 

where 
US 

81 = ia0-T,, 4Y)dY. 

Matching across point y1 

Relation (A 18) and the radiation condition BI ,  = 0 (see (A 3)) allow us to obtain 
reflection and transmission coefficients of the wave incident to the barrier (see $4). 
Then, taking into account that p < 1, we have (4.4). 
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